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Abstract—The automated evaluation of flight maneuver perfor-
mance in civilian and military aircraft enhances pilot proficiency
and aircraft safety. In this article, we present Aura, an in-
aircraft flight maneuver training system that provides real-time
performance feedback to pilots. Aura consists of sequential flight
data capture, flight data analysis, and flight data visualization
modules. The flight data capture module uses a pipeline of
computer vision techniques and object detection algorithms to
collect flight data optically. The flight data analysis module ap-
plies a transformer-based classifier network, trained on a custom
dataset, to identify flight maneuvers in real-time. The flight
data visualization module displays processed data to pilots on
a hardware display in a task-specific layout. Aura does not need
a physical interface with aircraft avionics, thereby circumventing
data access issues in military aircraft. Aura is ground tested using
UH-60M Black Hawk helicopter flight simulator recordings and
is flight tested for several hours in a Cessna 172S G1000 to
validate effectiveness.

I. INTRODUCTION

Rapid and reliable in-flight data collection and analysis tools
can significantly enhance flight training [1]–[3], flight test and
evaluation [4]–[6], flight safety [7]–[9], and flight maintenance
[10]–[12]. Evaluating pilot operational performance, often
through flight maneuvers and their objective standards, is
critical to determine pilot proficiency in a given aircraft or for a
particular mission [13]. Flight envelope expansion procedures
may be expedited by evaluating collected data in-flight, dis-
carding data-points that do not conform to requirements, and
repeating trials where necessary [14]. Loss of control in-flight
(LOC-I) may be prevented by analyzing flight data and helping
detect stalls and spins before they occur, or by alerting pilots
of their attitude, torque/power, and altitude during inadvertent
entry into instrument meteorological conditions (IIMC) [15].
Certain maintenance tasks may also benefit from in-flight
assessment against maintenance standards [11].

Many modern aircraft avionics systems collect, store, and
transmit flight data via a quick access recorder (QAR). QARs
provide easy access to raw flight data and enable real-time
performance, safety, and maintenance monitoring [16], but
are not legally mandated for use. Further, aircraft with older
avionics and the majority of military aircraft lack QARs or
similarly accessible systems [17]. This limits many pilots’
ability to access raw data in flight as well as the safety and
performance monitoring tools that require it. Additionally, few
flight training vehicles exist to enable rigorous self-evaluation
in-flight. A real-time evaluation tool, as opposed to post-
flight data analysis, enables pilots to quickly adjust between
subsequent maneuvers rather than between flights – resulting
in faster learning and enhanced outcomes.

Fig. 1: Representation of Aura in the cockpit.

We develop, deploy, and evaluate Aura (Fig. 1), an in-
aircraft flight maneuver training system applying machine
learning and computer vision techniques (Fig. 2). Aura is
designed for both military and civilian aircraft and facilitates
non-obtrusive, non-intrusive, and user-friendly data collection
from analog or digital flight instrumentation. Aura further pro-
vides pilots real-time flight maneuver performance feedback to
enhance in-aircraft training and can reasonably support a range
of in-flight maintenance, flight test and evaluation, and safety
of flight tasks.

Aura has sequential flight data capture, flight data analysis,
and flight data visualization modules [18]. To demonstrate
applicability to military aircraft, Aura is ground tested using
video from UH-60M Black Hawk helicopter flight simulators.
To validate effectiveness, Aura is flight tested for several hours
in a Cessna 172S conducting commercial flight maneuvers.
To our best knowledge, Aura is the first all-in-one example of
an in-aircraft, real-time, flight maneuver performance training
system that can obtain a wide range of flight instrumentation
and engine performance data without directly interfacing with
aircraft avionics. Our contributions follow:

1) A flight data capture module applies machine learning
and computer vision techniques to identify and select
relevant flight instruments from an instrument panel,
then obtains and aggregates flight data from those instru-
ments. This enables a single, well-positioned camera to
serve as an aircraft flight data recorder without needing
to interface with aircraft avionics.
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Fig. 2: Aura system architecture includes flight data capture, flight data analysis, and flight data visualization modules. The
flight data capture module applies computer vision techniques to transcribe flight instrumentation data. The flight data analysis
module applies transformers to classify flight maneuvers. The flight data visualization module displays performance data in a
pilot-friendly and maneuver-specific format for efficient knowledge transfer in flight. © Mahdi Al-Husseini 2023

2) A flight data analysis module uses transformers to
identify the flight maneuver being conducted. Flight
maneuver performance is then evaluated by comparing
the processed data against civilian or military maneuver
performance standards. We use a digital flight simulator
to generate a training dataset of 101 labeled flight
maneuvers, which we provide alongside in-flight test
data.1

3) A flight data visualization module presents maneuver
performance data to the pilot in real-time on an in-
aircraft hardware device with a custom graphical user
interface.

II. BACKGROUND

A. Computer Vision

Computer vision techniques have recently been used for
in-flight applications to include assessing abnormal pilot be-
havior, performing pilot hand detection in complex scenes,
transcribing analog and digital aircraft instrumentation, and
detecting external airspace traffic. In [19], a custom attention
mechanism is used with an established deep neural network-
based object detection and localization algorithm (YOLOv4)
to identify abnormal pilot behaviors and minimize associated

1Source code and data available at https://github.com/jbarnett8/AuraFlight

safety risks. Another approach to pilot monitoring focuses on
hand movements and applies image segmentation followed
by key point and contour extraction to identify the locations
of pilots’ hands during flight tasks [20]. Object detection
networks have been used to read radial dials, with an image
segmentation step further applied to isolate the dial needle
and attain an approximate instrument value [21]. Recent work
in [3] relies on deep artificial neural-network (ANN)-based
optical character recognition (OCR) software to read digital
flight displays, which would be challenging to use for vertical
tape-type displays encountered in the present work. Finally,
numerous patents and patent applications employ cameras in
and around the cockpit to identify air traffic and obstacles and
issue alerts to prevent collision avoidance and controlled flight
into terrain [22], [23]. Object detection, image segmentation,
ANNs, and alerting infrastructure all feature heavily in our
flight data capture, analysis, and visualization modules.

B. Maneuver Classification

A large body of maneuver classification literature has
emerged in the last two decades, initially dominated by sim-
ple, rules-based classification methods and trending towards
machine-learning and deep ANN-based approaches. An early
approach considered a series of features of a reference ma-
neuver and compared the distance against that of features
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from a queried maneuver [24]. Unsurprisingly, this process
involves significant calibration and fails to generalize well to
other maneuvers or aircraft. A more sophisticated approach
in [25] develops a library of maneuver features used as a
series of rule-based classifications. Similar research in [26]
considers specific maneuvers for H-60 series Navy helicopters.
These rules-based approaches suffer from fragility introduced
by a simplistic scheme unable to address edge cases. More re-
cent work applies conventional machine learning classification
algorithms such as logistic regression classifiers and support
vector machines (SVM) to label segments of time series data
obtained from an aircraft [27]. Results are then compared to
an ANN-based approach. Unfortunately, the conventional ma-
chine learning methods largely out-performed the ANN-based
methods, meaning that a suitable dataset where conventional
methods failed was not explored, if such a case exists.

To address the limitations in the existing literature, we
use recurrent neural network (RNNs) models to classify time
series data. Although this method is more data-intensive than
traditional machine learning classifiers, it is likely to generalize
better to other maneuvers and airframes with smaller training
sets than were required to generate the initial model. Pre-
training is an effective accuracy enhancing and cost-saving
method widely used in deep ANN-based applications; it is
likely exploitable here as well. Coupling this advantage with
their ability to classify sequences with arbitrary length makes
RNNs a promising approach for maneuver classification.

C. Automated Flight Maneuver Performance

The automated evaluation of flight maneuver performance
enhances flight simulator training and post-flight debriefings.
Both applications support self-learning by providing pilots
with comparative flight maneuver standard data and tailored
feedback. Yang et. al. introduce a machine learning supported
framework for training pilots in flight simulators [3]. An
offline mode uses datasets from expert pilots to train a
machine learning algorithm to predict control signals that
are then compared with trainee pilot actions. Pilot feedback
is generated based on the difference. CloudAhoy is a post-
flight debriefing tool that collects and analyzes data from the
Garmin G1000 avionics suite and other data input sources
to, in part, assign a pilot flight maneuver performance scores
[28]. CloudAhoy provides pilots with an easily accessible post-
flight visualization suite, and can identify student “problem
areas”. Zhang et. al. examine the correlation between aircraft
operational status indicators and pilot performance, and are
able to adequately evaluate overall pilot skill level using a
one-dimensional convolutional neural network that considers
QAR parameters [29].

III. FLIGHT DATA CAPTURE, ANALYSIS AND
VISUALIZATION

A. Optical Flight Data Capture

The flight data capture hardware assembly consists of (1)
a vibration-dampening mounting structure with battery bank
carriages to attach the assembly stably to the inside of the

cockpit; (2) a Raspberry Pi 4 to act as the host device; and (3)
an OAK-D from Luxonis as both a high-resolution image cap-
ture and hardware accelerator device for ANN-based computer
vision algorithms. Restricting most image-based computation
to the hardware accelerator aboard the OAK-D allows for
real-time data capture, achieving roughly 5 frames-per-second.
Performing all components of the computer vision pipeline on
the edge is important in this case because it does not require
a reliable, high-bandwidth connection to the internet where
more powerful models may be able to deliver more accurate
results at the price of speed, privacy, and security.

The data capture process is non-obtrusive, which requires
that it be robust to variations in mounting and calibrating the
data capture assembly, which leads to images captured from
differing perspectives. Performing inference on images with
differing perspectives from the training set can be challenging
for ANN-based computer vision techniques. As opposed to
conditioning these components of the data capture system
directly with images from different perspectives, we instead
apply a four-point perspective transform so that all inputs have
roughly the same perspective. We use functions provided in
the OpenCV package [30] to pre-processing images prior to
applying the ANN-based computer vision models. This has
at least four major benefits: (1) it increases the explainability
of the model, where fewer of the operations are abstracted
to a neural-network that could be handled by analytical ap-
proaches; (2) it requires less training data, where only head-on
perspective data capture is required to obtain a suitable training
set; (3) it produces a more specific model that requires a
smaller number of trainable weights, which decreases training
time, likelihood of overfitting, and inference time; and (4) it
compliments algorithms that can only provide bounding boxes
in the form of rectangles, which have little to no information
about the orientation of the detected object. For more reliable
screen detection, the corners of the flight display are marked
using AprilTags [31], which are visual fiducial markers used
to identify position, orientation, and identity with respect to
the camera position.

One ANN-based computer vision algorithm incorporated
into the data capture system is a YOLOv4 network [32],
which is normally used for object detection. This makes it
an obvious choice for isolating regions of interest in an image
to instruments with relevant flight data [33]. From a given
image, all of the instruments can be identified and interpreted
independently in such a way that incorporates their unique
designs.

One differentiating feature of our approach is the use of this
same type of network specifically for character recognition
for analog displays. Certain instruments require knowledge
of the relative vertical location of numbers indicating the
reading. Take for example a vertical tape-type display, which is
often used to report airspeed and/or altitude in the instrument
panel cluster. To correctly interpret the reading on the dial, an
algorithm must know where the numbers are spatially located,
where the index line is (where to read the measurement), and
how to handle non-centered readings (where, for example, a
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digit may not rest directly on the index line). Importantly, the
YOLOv4 can provide the complete location of all the numbers
within a region of interest assuming it has been properly fine-
tuned, which can enable a relatively simple algorithm to then
produce an accurate value of the gauge’s reading.

This network used in the data capture assembly software
pipeline is trained starting from an existing checkpoint of
the original YOLOv4 network, which is publicly available.
This checkpoint is fine-tuned using another publicly accessible
dataset consisting of over 600,000 labeled digits [34]. Finally,
the model undergoes another level of refinement where images
of a Garmin G1000 display while in-flight are recorded,
resulting in around 2000 additional labeled digits. Reserving
10% of these in-flight digits for testing shows that the final
model is capable of around 95% classification accuracy.

For use in-flight, the YOLOv4 model is serialized for
inference using the built-in hardware accelerator aboard the
OAK-D camera. Unifying the pipeline—including screen de-
tection, the perspective transform, and gauge reading—all
using the visual processor unit allows the pipeline to achieve
roughly 5 Hz update frequency. This is useful even in the
limited demonstration in the present work because the Garmin
G1000’s built in logging capability only captures flight data
at a rate of 1 Hz. This rate may be insufficient for capturing
maneuvers with features spanning a smaller time scale.

B. Data Filtering

The data capture assembly will provide a group of labeled
number boxes for a given gauge. Using the pre-defined index
line shown with the arrow in Fig. 3, an estimation of the
reading can be calculated based on the inferred place value
as well as the relative position of the boxes above or below
the index line. For example, the gauge in Fig. 3 should read
somewhere between 58 and 59, but would only be 58 if the 8
box is sliced in half by the index line. For practical purposes,
however, the gauge reading is taken to be a whole number.
The reason for this is the variability in the detection box
size and centering, which can often be inconsistent enough
to introduce errors comparable to the additional precision we
would otherwise try to infer.

Additionally, sometimes even when the bounding boxes are
correct, the labels can be incorrect. This is especially difficult
to handle in the case where the most significant digit changes.
A simple filtering algorithm is implemented to ensure that
outlier measurements are ignored. This is accomplished by:
(1) rejecting obviously nonphysical measurements such as
headings outside the range 1◦ to 360◦ and airspeeds much
greater than the maximum specifications of the Cessna 172S;
and (2) defining a maximum rate of change for each flight
indicator and ignoring values that violate this maximum rate
of change compared to the most recent valid measurement.
These maximum rates are hyper-parameters we set to 25
◦/s, 5 kn/s, and 20 ft/s for heading, airspeed, and altitude,
respectively. In either case for rejection, missing values are
inferred retroactively using linear interpolation after a valid
measurement occurs.

Fig. 3: Illustration of labeled boxes from a vertical tape display
obtained from the data capture pipeline. The dashed line
indicates the index line, where a measurement is supposed
to be taken visually. Using the location and label of bounding
boxes, the reading of the gauge can be inferred while taking
into account potential errors in bounding box location and
label.

(a) (b)

(c) (d)

Fig. 4: Digital flight simulation data recordings and video
capture for a Cessna 172 G1000 executing an approach into
Kalaeloa airport (PHJR) in varying environmental conditions:
(a) sunset with an overcast cloud layer, (b) sunrise with clear
skies, glare present, (c) nighttime with scattered clouds, and
(d) high noon with clear skies.

C. Flight Maneuver Recognition

Our classifier is a Transformer-based network leveraging
both self- and cross-attention [35] as this architecture is
suitable for classification of time series data. To train such a
network to recognize specific maneuvers, a labeled dataset of
flight time series data is required. Unfortunately, to our knowl-
edge no such publicly available dataset exists. To address this,
we generate a custom dataset comprised of several hours of
Microsoft Flight Simulator (MFS) digital flight maneuver data
runs, resulting in 101 manually labeled maneuvers spanning
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20 different flights. MFS flight run video was recorded to help
evaluate the flight data capture process. As shown in Fig. 4,
a Cessna 172 G1000 matching that flown during actual flight
trials is piloted in various environmental conditions. Simple
flight maneuvers preformed include takeoffs and landings.
Complex flight maneuvers performed include steep turns and
chandelles. Maneuvers were initiated at various altitudes and
aircraft headings. MFS flight trials began at airports to include:
PHNL (field elevation: 13 ft), PHNG (24 ft), PHJR (30 ft),
PHHI (837 ft), PHNY (1308 ft), and PHSF (6190 ft). The
collected maneuver data was substantially affected by aircraft
performance limitations caused by higher altitudes at PHNY
and PHSF.

The dataset is constructed using the comma separated value
file output of MFS from each individual flight trial, 20 flights
in total. Because one of the goals is to compare with real
flight data, the synthetic data from MFS is interpolated to the
same 1 Hz logging rate of the Garmin G1000 used to collect
our real-world ground-truth data. Out of these 20 flights, 17
are reserved for training, 3 for validation, and 3 for testing.
Each of the flights are then further subdivided into their
constitutive maneuvers based on the manually applied labels,
discarding unlabeled portions of each flight, such that a single
sample from a given dataset will be a tuple consisting of:
(1) a contiguous segment of the time series flight data and
(2) a single maneuver label. The data is further augmented
by repeatedly sub-sampling the complete maneuvers from the
start of the maneuver to a random time at least 10 seconds
from the beginning of that same maneuver but no later than
the end of the same maneuver. Repeated sub-samples, i.e. sub-
samples whose ending index matches a previous sub-sample,
are discarded. This sub-sampling explains why, for example,
that the number instances of flight maneuvers in Fig. 6 are
large compared to reasonable expectation for 3 full flights.
Finally, although the synthetic dataset has a large number of
useful features, only altitude, heading, and airspeed are used as
these are the indicators captured by the camera system during
the real-life test.

The transformer-based classifier network schematic is
shown in Fig. 5 which shows the flow of the flight data
segments towards the flight segment label. Following to the
right side of the diagram, the sequence is biased to begin
at zero by subtracting the first time point from the entire
sequence. A lifting layer (i.e. multiplying the input by a
tall matrix) increases the dimension of the feature and then
passes through a multi-head self-attention layer. Following
from the left, the time derivative of the flight data segment
is approximated through the first-order forward difference
scheme and similarly passes through a lifting layer to increase
the feature dimension. The cross-attention output is computed
using the lifted time derivative values and the output of the
self-attention layer. Finally, the final time step in the sequence
output by the cross-attention layer is extracted, passed through
a multi-layer perceptron (MLP), and a softmax function is
applied to obtain a probability distribution.

The model is trained using an Adam optimizer with a class-

Fig. 5: Schematic of transformer-based classifier network
architecture. Layers are colored according to their function.

weighted cross-entropy loss function, which accounts for class
imbalances in the dataset. The model trained for 41 epochs and
we use the checkpoint with the best validation loss. The results
of the test dataset are shown in Fig. 6, indicating that the model
is able to perfectly classify all the maneuvers performed in
each of the three flights.

The model is further evaluated for its ability to classify
on-the-fly by feeding it the full flights–not just the maneuver
portions–of the test dataset. A sliding window of the full flight
with a maximum sequence length of 30 seconds in 10 second
intervals is passed to the classifier to label 10 seconds of data at
a time. Only labels with at least 80% confidence are accepted.
The results of this test are shown in Fig. 7, which demonstrates
the ability of the model to correctly classify the labeled portion
of the test dataset in all cases.

D. User Interface Design

Thirteen certified general aviation pilots and sixteen rated
military aviators provided constructive feedback on six flight
maneuver pages associated with two types of aircraft. An iOS
application was written in Swift and developed in XCode
for use on an iPad affixed to an aviation kneeboard. The
application includes an aircraft selection menu, maneuver
selection sub-menus, and maneuver analysis pages, as shown
in Fig. 8. Four maneuver analysis pages were developed for
the UH60-M Black Hawk helicopter: visual meteorological
takeoff (VMC) takeoff, VMC approach, roll-on landing, and
autorotation. Each UH60-M maneuver analysis page visualizes
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Fig. 6: The best-validation-loss checkpoint transformer-based
classifier shows perfect performance labeling isolated full and
sub-sampled maneuvers for the test dataset, consisting of 3
flights.

Fig. 7: On-the-fly labeling of the full test dataset using a
sliding window of 30 seconds labeling 10 seconds at a time
for plots shown on the right. Plots on the left show the ground
truth maneuver labels.

flight maneuver standards from the Army Aircrew Training
Manual (ATM). Two maneuver analysis pages were developed
for the Cessna 172S: steep turns and chandelles. The 172S ma-
neuver analysis pages are designed to illustrate flight maneuver
standards in the Airman Certification Standards (ACS). We
highlight the Cessna 172S steep turn maneuver analysis page
for discussion due to its multiple quantitative ACS standards
involving airspeed, heading, altitude, and bank angle. Each
maneuver analysis page is designed to be reviewed within
twenty seconds. Twenty seconds was determined to be enough
time to gain insights from a given maneuver analysis page
and yet not so much as to cause substantial flight training
delays. A second pilot should maintain aircraft control while
the pilot who conducted the evaluated maneuver reviews his
performance. Alternatively, should the maneuver be conducted
in a traffic pattern near a runway or helipad, a single pilot
aircraft should be safely on the ground prior to reviewing
performance.

We balance the need to provide concise critical performance
highlights quickly in-flight with in-depth contextualizing in-
formation to be reviewed post-flight. A task active button (1)
supports manual activation of flight data recording, processing,
and visualization for a given task. The analysis section is
composed of maneuver training standards with deviation data
and go/no go evaluations (2) and two-dimension position and
altitude graphs with color windows specific to the evaluated
maneuver (3). If the pilot is unable to review the maneuver
analysis page in-flight, they may save a still image of the
maneuver page to the device camera roll (8) and/or save a
corresponding raw data file (4) for review at a later time.
Visualized data may be cleared (5) from the maneuver analysis
page at any time, effectively serving as a page reset. ATM or
ACS documentation may be retrieved directly (6) from the ma-
neuver analysis page. Many maneuvers, including steep turns,
have different performance standards for certain segments of
the aviation population. The pilot may select the appropriate
standards for a given maneuver (7) accordingly.

IV. EXPERIMENTAL DESIGN AND TESTING METHODS

Aura system is first validated and tested in simulation with
prerecorded video data from different flight simulators. Then,
the system is tested in a real-world scenario using a Cessna
172S aircraft. In the following subsections, we detail the
experimental setup along with the results and lessons learned
from these simulation and actual flight testing.

A. Video Replay and Simulation Testing

As shown in Fig. 9, Aura was tested using prerecorded
UH-60M Black Hawk helicopter footage taken from digital
and physical flight simulators. The UH-60M Black Hawk
avionics suite consists of four multi-functional displays, each
of which may be selected from a set of pages to include a
primary flight display, an engine indicating and crew alerting
system, a tactical map, and a maintenance menu. Although
capturing data from the engine indicating and crew alerting
system screen would be valuable for certain maintenance tasks
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(a) (b) (c)

Fig. 8: Screenshots of (a) the aircraft selection menu, (b) a maneuver selection sub-menu, and (c) a maneuver analysis page,
from the Aura iOS application designed for in-flight use. (c) analyzes a steep turn maneuver to commercial standards executed
during actual flight trials.

and emergency procedure training, we focus on the primary
flight display. The primary flight display includes a barometric
altimeter, radar altimeter, attitude indicator, compass, airspeed
indicator, vertical speed indicator, power pod, fuel indicator,
and other miscellaneous secondary instrumentation. We pro-
gram Aura to analyze the pre-recorded video inputs in place
of the live camera stream. The screen detection, perspective
transformation, gauge recognition through image segmenta-
tion, and gauge reading through object detection steps can be
seen in the bounding box and data reading overlays on the right
side of the top image in Fig. 9. Aura seamlessly captured the
UH-60M engine torque, airspeed, altitude, radar altitude, and
heading data across all prerecorded videos.

B. Flight Testing

The Aura end-to-end pipeline was evaluated across sev-
eral one-hour flights in Hawaii, Alabama, and California
during which commercial flight maneuvers were repeatedly
performed by a certified flight instructor in a Cessna 172S
with a Garmin G1000 electronic flight instrumentation sys-
tem. Fig. 10 depicts the ground track of a Cessna 172S
conducting steep turns after departing from PHJR. Colored
fiducial markers/AprilTags were placed in the corners of
both primary flight displays to assist with screen detection.
The stabilization rig with a camera was fixed to the aircraft
cabin ceiling midway between the two front seats. Secondary
cameras within the cockpit were attached to the glare shield
and windshield to collect additional footage from outside and
inside the aircraft respectively. Aura successfully and reliably

collected, processed, and visualized chandelle and steep turn
maneuver data on the operatively coupled tablet (iPad Air 4th
Generation) secured to the pilot’s kneeboard. Several lessons
were learned during deployment.
Glare and Vibration

Environmental factors during flight tests occasionally dis-
rupted the flight data capture process. Intermittent glare on the
primary flight displays during certain times of day resulted in
partial or full omission of flight parameters considered during
flight data analysis. In both the partial and full case, data
during the glare interval was automatically filtered out. As
previously discussed in the data validation step, fusing and
filtering data from supported sources to include the tablet
may minimize glare disruptions. Aircraft vibration is a natural
consequence of powered flight, and has been demonstrated to
exceed 0.25m/s2 in a climbing Cessna 172R [36]. Natural
aircraft vibration was demonstrated to substantially affect the
internally mounted cameras without shock-absorbing fixtures,
to an extent preventing data capture. To address this issue,
a camera vibration isolation mount was designed and built,
shown in Fig. 11. The mount consists of two plates, connected
to each other through four stainless steel cables, preloaded in
the bending configuration, and four elastic cords placed in
tension. This design and configuration are typical in camera
gimbal vibration isolators and is proven to be effective in
testing. The mounting hardware constructed was added to later
flights and proved sufficient for data capture purposes.
Minimizing Pilot Distraction with Automation

Although the user interface was designed to minimize
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(a)

(b)

Fig. 9: UH-60M Black Hawk helicopter avionics as seen in
(a) a physical flight simulator and (b) a digital flight simulator.

Fig. 10: Ground track showing the first leg of one of several
flight tests during which commercial flight maneuvers were
performed in a Cessna 172S.

interaction during flight, there remain several opportunities
to further reduce pilot distraction. Data collection may begin
automatically at the start of a maneuver, or once clearing turns
are recognized, as determined by the underlying maneuver
classifier. Similarly, data collection may be automatically
concluded following the detected completion of a maneuver.
Mechanisms for auto-saving the raw data and screenshot,
with maneuver designation and timestamp labeling, may then

Fig. 11: Setting up the shock-absorbing fixture for the cockpit
camera in a Cessna 172S. © Mahdi Al-Husseini 2023

be incorporated into the iOS application. The pilot currently
selects their platform during application initialization, which
in turn identifies the appropriate data collection pipeline for
the platform’s instrument panel. A more flexible solution is
envisioned for military aircraft whereby the platform may be
identified from the instrument panel itself, thus automatically
identifying the appropriate data collection pipeline and avail-
able flight maneuver pages. The diversity of instrument panel
setups in general aviation aircraft, even within model groups,
precludes this capability.

V. RESULTS

The following are the results of a single flight in a Garmin
G1000 equipped Cessna 172S at Livermore Municipal Airport.
The flight consisted of takeoff, followed by three steep turns,
two Chandelles, and landing. Ground truth data was obtained
using the Garmin G1000 data logging feature.

A. Data Validation

The Aura system, mounted inside the cabin on the roof
facing the left display as seen in Fig. 11, is used to transcribe
the airspeed, heading, and altitude from the primary flight
display. The measurements obtained from the Aura system
are compared with the ground truth data shown in Fig. 12.
At the beginning of data collection, the median of the first 40
non-default measurements are used to establish baselines for
each flight indicator. The first valid measurement is determined
to be at the index where all three flight indicators pass the
rate-threshold filter as described in section III.B. The gray
bar shown at the beginning of each plot indicates the period
of invalid measurements before this first valid measurement.
Visually, all three flight indicators appear to be very accurate.

To compute a quantitative measurement of accuracy, the
ground truth measurements are interpolated to the same grid
as the Aura system data. Absolute errors for altitude, airspeed,
and heading are show in Table I, where measurements before
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Fig. 12: Time series data of altitude, airspeed, and heading obtained from the Aura system–labeled as ‘Filtered’–and the Garmin
G1000 data–labeled as ‘Reference’.

Indicator Mean Median Max
Absolute Error Absolute Error Absolute Error

Altitude 7.3 ft 5.4 ft 63.8 ft
Airspeed 0.6 kn 0.5 kn 7.7 kn
Heading 1.3◦ 0.4◦ 38.4◦

TABLE I: Absolute error statistics of measured flight indica-
tors for experiment in a Cessna 172S.

the first valid measurement indicated visually by the gray
boxes in Fig. 12 are excluded. Given the relevant scales for
each of these flight indicators, the median absolute errors show
that the Aura system is indeed highly accurate.

B. In-Flight Maneuver Classification

Using the in-flight measurements obtained from the Aura
system, the flight indicator data can be passed through the
transformer-based classifier network in the same way as the
on-the-fly labeling test performed in Section III.D. The results
of this experiment are presented in Fig. 13, which shows the
Aura-labeled time series of the altitude with a comparison
to the ground truth labeling, and Fig. 14, which shows the
Aura-labeled time series of the latitude and longitude. The
raw sequence classification is lightly post-processed by filling
in short gaps of low confidence between regions of high
confidence of the same maneuver with the high confidence
maneuver label. In this context, high confidence is any classi-
fication equal or above 80% while low confidence is anything
below; short gaps are defined as anything less than 30 seconds.
Finally, any isolated section of the same maneuver label less
than 20 seconds long is discarded.

The quantitative performance of the model is evaluated
using the F1 score, which is appropriate for sequence-based
labeling tasks. It is defined as the harmonic mean of precision
(P ) and recall (R):

F1 = 2 · P ·R
P +R

.

For a given label, precision and recall are defined as:

P =
TP

TP + FP
, R =

TP

TP + FN

Maneuver Precision Recall F1-Score
Takeoff 1.0 0.95 0.97

Steep Turn 1.0 0.80 0.90
Chandelle 1.0 0.71 0.83
Landing 1.0 0.93 1.0

TABLE II: Precision, recall, and resulting F1-score from the
flight data visualized in Fig. 13.

where TP denotes the number of true positives, FP the num-
ber of false positives, and FN the number of false negatives.
Precision measures the proportion of predicted instances of
the label that are correct, while recall measures the proportion
of actual instances of the label that are correctly identified.
Results in Table II show that each maneuver has perfect pre-
cision, meaning there are no false positives. The recall reveals
there are somewhat significant false negatives, especially for
the steep turns and chandelles. Overall, the F1 scores show
good performance with none being lower than 0.8.

VI. DISCUSSION

The Aura system demonstrates that it is able to accurately
transcribe flight indicator information for the airspeed, head-
ing, and altitude while in-flight and during maneuvers. Further,
the measurement is accurate enough to pass through the
transformer-based classifier to obtain accurate labels for flight
segments. This is particularly impressive when considering
that part of the architecture of the classifier involves computing
the time derivative, which is highly sensitive to noise in the
original signal.

The Aura system also demonstrates robustness in its ability
to continue collecting data during and after disruptions. For
example, in the period between the two Chandelle maneuvers
shown in Fig. 13 the camera was moved out of alignment due
to one of the passengers moving in the cabin. The camera
was eventually repositioned; remarkably, there is no clear
indication of an increase in measurement error during or after
this event as shown in Fig. 12. This is thanks to robust
CV algorithms and measurement filtering with retro-active
updates.
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Fig. 13: Time series of the altitude with labels (markers on the altitude profile curve) obtained from the Aura system and
ground truth labels (textured rectangular regions).

Fig. 14: Time series of the latitude and longitude with labels (markers on the altitude profile curve) obtained from the Aura
system.

Considering maneuver classification, in both the synthetic
testing dataset and the real Cessna 172S experiment, the
transformer-based classifier is able to nearly perfectly predict
the label of the labeled sections of the synthetic test dataset
or the real experimental data, achieving perfect precision for
the experimental data as shown in Table II. Recall is more
challenging for the model, but the F1 scores are at least greater
than 0.8 and the overall macro average F1 score is 0.92,
indicating good performance. One notable existing limitation
of the classifier is that it has difficulty identifying where
consecutive maneuvers of the same type end and begin. This
can be seen most clearly seen in Fig. 7 in the first and third
row where three steep turns are executed consecutively. The
classifier identifies them all as steep turns accurately, but it
does not separate them. The classifier also extends the label
of takeoff and landing far beyond the labeled section in the
synthetic dataset. This indicates that the model cannot yet
meaningfully distinguish the end of the takeoff, for example,

so further work is needed to help identify these boundaries.

VII. CONCLUSIONS AND FUTURE WORK

A full pipeline, from data acquisition to pilot feedback
is demonstrated using both pre-recorded video from digital
and physical flight simulators as well as live footage from
inside a fixed-wing aircraft in flight. The pipeline features
automated flight data capture achieving median absolute error
of 0.4◦, 0.5 kn, and 5.4 ft for heading, airspeed, and altitude,
respectively. It also demonstrates highly accurate on-the-fly
maneuver labeling using the same measurements obtained
from the Aura system, achieving a macro F1 score of 0.92.

Future work will focus on automated recognition of flight
displays and airspeed indicators. Additional flight testing in
aircraft with both digital and analog instrumentation will help
expand Aura’s use to a variety of fixed-wing and rotary
aircraft. Flight testing in different lighting conditions - dusk,
dawn, high noon, and nighttime - will help ensure Aura can
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operate as expected regardless of meteorological condition and
takeoff time.

All views expressed are those of the authors alone, and do not
reflect the views of the US Army or Department of Defense.
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[5] M. Jones, M. Alexander, M. Höfinger, M. Barnett, P. Comeau, and
A. Gubbels, “In-flight test campaign to validate pio detection and
assessment tools,” Aerospace, vol. 7, no. 9, p. 136, 2020.

[6] B. M. de Silva, J. Callaham, J. Jonker, N. Goebel, J. Klemisch,
D. McDonald, N. Hicks, J. Nathan Kutz, S. L. Brunton, and A. Y.
Aravkin, “Hybrid learning approach to sensor fault detection with flight
test data,” AIAA Journal, vol. 59, no. 9, pp. 3490–3503, 2021.

[7] I. Melnyk, A. Banerjee, B. Matthews, and N. Oza, “Semi-markov
switching vector autoregressive model-based anomaly detection in avia-
tion systems,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1065–
1074.

[8] M. R. Schlichting, V. Rasmussen, H. Alazzeh, H. Liu, K. Jafari, A. F.
Hardy, D. M. Asmar, and M. J. Kochenderfer, “Leraat: Llm-enabled real-
time aviation advisory tool,” arXiv preprint arXiv:2503.16477, 2025.

[9] W. Zhao, L. Li, S. Alam, and Y. Wang, “An incremental clustering
method for anomaly detection in flight data,” Transportation Research
Part C: Emerging Technologies, vol. 132, p. 103406, 2021.

[10] P. C. Berri, M. D. Dalla Vedova, and L. Mainini, “Computational
framework for real-time diagnostics and prognostics of aircraft actuation
systems,” Computers in Industry, vol. 132, p. 103523, 2021.

[11] I. Kabashkin and V. Perekrestov, “Ecosystem of aviation maintenance:
transition from aircraft health monitoring to health management based
on iot and ai synergy,” Applied Sciences, vol. 14, no. 11, p. 4394, 2024.

[12] I. Stanton, K. Munir, A. Ikram, and M. El-Bakry, “Predictive mainte-
nance analytics and implementation for aircraft: Challenges and oppor-
tunities,” Systems Engineering, vol. 26, no. 2, pp. 216–237, 2023.

[13] A. Idowu, “Evaluating human factors in the commercial pilot-airplane
airman certification standards,” International Journal of Aviation Re-
search, vol. 14, no. 1, 2022.

[14] P. Sorokowski and M. Garland, “Envelope expansion lessons learned,”
Tech. Rep., 2018.

[15] M. Smaili, J. Breeman, T. J. Lombaerts, J. Mulder, Q. Chu, and
O. Stroosma, “Intelligent flight control systems evaluation for loss-of-
control recovery and prevention,” Journal of Guidance, Control, and
Dynamics, vol. 40, no. 4, pp. 890–904, 2017.

[16] Y. Liu and J. Bai, “Research on quick access recorder data preprocessing
based on kernel extreme learning machine and wavelet transform,” in
Third International Conference on Electronic Information Engineering
and Data Processing (EIEDP 2024), vol. 13184. SPIE, 2024, pp. 894–
903.

[17] D. Johnson and T. Halbert, “Plug and play acquisition (implementing
mosa),” Ph.D. dissertation, Acquisition Research Program, 2025.

[18] M. Al-Husseini, J. Barnett, A. Chen, and J. D. Thomas, “Collection,
processing, and output of flight information method, system, and appa-
ratus,” Nov. 5 2024, uS Patent 12,136,277.

[19] N. Chen, Y. Man, and Y. Sun, “Abnormal cockpit pilot driving behavior
detection using yolov4 fused attention mechanism,” Electronics, vol. 11,
no. 16, p. 2538, 2022.

[20] C. Qian, Z. Wang, and S. Fu, “Research on rgb-d-based pilot hand
detection in complex cockpit environment,” in International conference
on human-computer interaction. Springer, 2023, pp. 573–584.

[21] E. Tunca, H. Saribas, H. Kafali, and S. Kahvecioglu, “Determining
the pointer positions of aircraft analog indicators using deep learning,”
Aircraft Engineering and Aerospace Technology, vol. 94, no. 3, pp. 372–
379, 2022.

[22] A. A. Gadgil and J. L. Komer, “Obstacle avoidance system,” Nov. 9
2023, uS Patent App. US18/102,117.

[23] M. Al-Husseini, “System and method for calculation and display of
formation flight information on augmented reality display device,”
Nov. 9 2023, uS Patent App. US18/102,117.

[24] J. Travert, “Flight Regime and Maneuver Recognition for Complex
Maneuvers,” Ph.D. dissertation, Embry-Riddle Aeronautical University
- Daytona Beach, Daytona Beach, Florida, 2009.

[25] Y. Wang, J. Dong, X. Liu, and L. Zhang, “Identification and standardiza-
tion of maneuvers based upon operational flight data,” Chinese Journal
of Aeronautics, vol. 28, no. 1, pp. 133–140, 2015.

[26] Barndt, Gene, Miller, Charles, Sarkar, and Subhasis, “Maneuver regime
recognition development and verification for h-60 structural monitoring,”
2007.

[27] C. Bodin, “Automatic Flight Maneuver Identification Using Machine
Learning Methods,” Ph.D. dissertation, Linkoping University.

[28] A. Kemp, “Evaluation modeling for energy management in general
aviation airplanes,” Ph.D. dissertation, Purdue University, 2023.

[29] S. Zhang, Z. Huo, Y. Sun, F. Li, and B. Jia, “Pilot maneuvering
performance analysis and evaluation with deep learning,” International
Journal of Aerospace Engineering, vol. 2023, no. 1, p. 6452129, 2023.

[30] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[31] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011
IEEE International Conference on Robotics and Automation, 2011, pp.
3400–3407.

[32] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

[33] D. Pal, A. Alladi, Y. Pothireddy, and G. Koilpillai, “Cockpit display
graphics symbol detection for software verification using deep learning,”
in 2020 International Conference on Data Science and Engineering
(ICDSE). IEEE, 2020, pp. 1–5.

[34] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng et al.,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS workshop on deep learning and unsupervised feature learning,
vol. 2011, no. 2. Granada, 2011, p. 4.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.
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